..

Jornal de Teoria Generalizada de Mentiras e Aplicações

Centralizers of Commuting Elements in Compact Lie Groups

Abstract

Kris A Nairn

The moduli space for a flat G-bundle over the two-torus is completely determined by its holonomy representation. When G is compact, connected, and simply connected, we show that the moduli space is homeomorphic to a product of two tori mod the action of the Weyl group, or equivalently to the conjugacy classes of commuting pairs of elements in G. Since the component group for a non-simply connected group is given by some finite dimensional subgroup in the centralizer of an n-tuple, we use diagram automorphisms of the extended Dynkin diagram to prove properties of centralizers of pairs of elements in G.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado

Compartilhe este artigo

Indexado em

Links Relacionados

arrow_upward arrow_upward