..

Revista de Sistemas Elétricos e Eletrônicos

Volume 11, Emitir 5 (2022)

Artigo de revisão

A Review on Nano-Electronics

Gongyu Jiang

Nanoelectronics alludes to the utilization of nanotechnology in electronic parts. The term covers a different arrangement of gadgets and materials, with the normal trademark that they are little to such an extent that between nuclear connections and quantum mechanical properties should be concentrated widely. A portion of these up-and-comers include: crossover sub-atomic/semiconductor hardware, one-layered nanotubes/nanowires (for example silicon nanowires or carbon nanotubes) or high level atomic hardware. Nanoelectronic gadgets have basic aspects with a size range between 1 nm and 100 nm. Ongoing silicon MOSFET (metal-oxide-semiconductor field-impact semiconductor, or MOS semiconductor) innovation ages are now inside this system, including 22 nanometers CMOS (correlative MOS) hubs and succeeding 14 nm, 10 nm and 7 nm FinFET (blade field-impact semiconductor) ages. Nanoelectronics are here and there thought to be as troublesome innovation since present applicants are fundamentally unique in relation to customary semiconductors.

Comentário

A Short Note on Gold Nanoparticles

Sumaira Anjum

Nanoelectronics alludes to the utilization of nanotechnology in electronic parts. The term covers a different arrangement of gadgets and materials, with the normal trademark that they are little to such an extent that between nuclear connections and quantum mechanical properties should be concentrated widely. A portion of these up-and-comers include: crossover sub-atomic/semiconductor hardware, one-layered nanotubes/nanowires (for example silicon nanowires or carbon nanotubes) or high level atomic hardware. Nanoelectronic gadgets have basic aspects with a size range between 1 nm and 100 nm. Ongoing silicon MOSFET (metal-oxide-semiconductor field-impact semiconductor, or MOS semiconductor) innovation ages are now inside this system, including 22 nanometers CMOS (correlative MOS) hubs and succeeding 14 nm, 10 nm and 7 nm FinFET (blade field-impact semiconductor) ages. Nanoelectronics are here and there thought to be as troublesome innovation since present applicants are fundamentally unique in relation to customary semiconductors.

Mini revisão

Studying the Thermal Conductivity of Perovskite Thin Films

Ajay Kumar

A methodology for exact assurance of the warm conductivity of novel sans lead perovskite slight movies by 3ω strategy, acknowledged with a field programmable simple cluster circuit, is introduced. The target of the work is to concentrate on the connection between the warm conductivity of the photoelectric perovskites and the warm solidness of the sun oriented cells, in which they are consolidated. It is found that the sun powered cells' drawn out strength under various double-dealing conditions, like persistent brightening and raised temperatures, is impacted to an alternate degree, as per the warm conductivity. The created arrangement for execution of the 3ω strategy is adjusted for dainty film tests and can be applied to all layers engaged with the sunlight based cell, in this manner characterizing their singular commitment to the general gadget warm corruption. As indicated by the led estimations, the coefficients of warm conductivity for the original materials are as per the following: for the iodine-based perovskite film, it is 0.14 W/mK and for the chlorine-based perovskite film, it is 0.084 W/mK. Subsequently, the warm flimsiness and corruption rate at constant brightening are, individually, 10.6% and 200 nV/min for the iodine-based perovskite sun oriented cell, and 6.5% and 20 nV/min for the chlorine-based cell. At raised temperatures up to 54°C, the relating shakiness values are 15 μV/°C with a debasement pace of a normal of 2.2 μV/ min for the cell with iodine-containing perovskite and 300 nV/°C with a corruption pace of 66 nV/min for the cell with chlorine containing perovskite.

Artigo de revisão

Design and Simulation of Single Phase PV Grid-Tie Inverter with Net Metering

Muhammad Imran Akbar, Madiha Chaudhary and Rida Rasheed

The ever increasing demand for electricity and the shortcomings of finite sources is making the world to move towards renewable energy sources. In this report, the detailed analysis of the system comprising of single phase photovoltaic grid-tie inverter with net metering is deliberated. To inject solar generated waveform into the grid, one has to synchronize both waveforms of solar output and utility grid. The electronic device which synchronizes two waveforms of different power resources is called grid-tie inverter. Net meter senses the current from both sides i.e. from grid and inverter and gives a display of either the power is drawn from the grid or it is injected into the grid. The whole circuit was simulated at first then it was successfully implemented as a prototype.

Artigo de Pesquisa

Economic Battery Sizing for Reliable Quantized Solar PV Power Output

H Senal Perera, J Rohan Lucas*

Generation of power from Solar PV inherently possesses a set of reliability issues. These issues are magnified with increasing penetration, and mitigation provides increased compatibility, especially for power systems with lower inertia. This paper addresses the intermittency issues. It provides and sustains a more deterministic output obtained by a quantized prediction input utilizing a demand response system. Utilization of the proposed method would allow Solar PV to be considered semi-dispatchable when connected to the grid. It would add virtual inertia, as well as improving the ability to safely operate in stand-alone mode. An algorithm is incorporated as an alert system in a ‘worst case scenario’ as a safety measure in the rare case of not being able to meet commitment. The financial impact due to the addition of the device has been evaluated and the levelized cost of generation is shown to be 16.5 LKR/kWh. For rooftop solar, the cost- benefit ratio is shown to be above 1.3 after implementation. A battery sized at 2.7% of rated daily energy (1.5 Ah for a system operating at 450 V) is shown to be sufficient for a PV system generating a daily peak energy of 25 kWh to effectively convert Solar PV into a semi-dispatchable source. This allows special benefits from the utility service provider, which increases the feasibility of the incorporation.

Artigo de Pesquisa

Titanium Changes Generated at Different DC

Xiao Quan Mao and Zhi Ping Zheng

Objective: To investigate the optimal DC voltage that titanium morphology was created with micro arc oxidation. Methods: The titanium was cut into 10 mm, 10 mm, 1 mm and they were grind and polished respectively. DC voltage that treated titanium was used single variable control: 200V, 250V, 300V, 350V, 400V, 450V; treatment time: 5S; the treatment temperature was less than 40?, Electric current and other conditions were same Results: The morphology on titanium surface was multipore structure, and the pore size was different after titanium treated with micro arc oxidation. The average pore size of MAO250V, MAO300V and MAO350V groups were bigger than 1 μm, MAO200V, MAO400V and MAO450V groups were less than 1 μm, the porosity was 17.4% at MAO200V group, 37% at MAO250V, MAO300V and MAO350V groups, 25.2%, 20.7% at MAO400V and MAO450V group; thickness was from 0.63 μm at MAO200V to 6.87 μm at MAO450V group. There was significant between the groups in the pore size and thickness Conclusion: Morphology could meet the needs of clinic at 250-350V DC voltage.

Indexado em

Links Relacionados

arrow_upward arrow_upward