..

Jornal de Ciência da Computação e Biologia de Sistemas

Performance Comparative in Classification Algorithms Using Real Datasets

Abstract

Hanuman Thota, Raghava Naidu Miriyala, Siva Prasad Akula, K.Mrithyunjaya Rao, Chandra Sekhar Vellanki, Allam Appa Rao and Srinubabu Gedela

Classification is one of the most common data mining tasks, used frequently for data categorization and analysis in the industry and research. In real-world data mining sometimes it mainly deals with noisy information sources, because of data collection inaccuracy, device limitations, data transmission and discretization errors, or man-made perturbations frequently result in imprecise or vague data which is called as noisy data. This noisy data may decrease performance of any classification algorithms. This paper deals with the performance of different classification algorithms and the impact of feature selection algorithm on Logistic Regression Classifier, How it controls False Discovery Rate (FDR) and thus improves the efficiency of Logistic Regression classifier.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado

Compartilhe este artigo

Indexado em

Links Relacionados

arrow_upward arrow_upward