Bhaumik R Dave, Pritesh Parmar, Ankit Sudhir, Ketankumar Panchal and Subramanian RB
World is threaten to energy crisis which has advances research in bioenergy and specifically development of biofuels to replace petroleum products have increased the use of microbial enzyme like cellulases and xylanases as well as amylases for generation of reducing sugars for their conversion into bioethanol. Extensive research has been carried out in this view but alkaline cellulase production and molecular characterization is not studied in detail so far, this study will aid to achieve it. Optimization of fermentation parameters for production of cellulase was evaluated with the help of Response Surface Methodology (RSM) a statistical design, initial pH (9), moisture ratio (1:1) and incubation time (72 h) (run no.4) were found to be ideal parameters for optimum production of cellulase, substrate Jatropha seed cake without any pre-treatment was found to be an ideal source for cellulase production by Bacillus licheniformis under solid state fermentation. Cellulase gene of size 786 bp was isolated later using PCR techniques, confirmed with sequence analysis and ligated to pRSET A vector for the transformation to E. coli DH5α. Positive clones were identified and sequenced to justify the cloning. Sequence of Bacillus licheniformis endo-β-1,4-glucanase (Cel12A) gene showed 100% similarity with endoglucanase gene sequence from Bacillus licheniformis ATCC 14580 genome, shows successful cloning of Cel12A gene into pRSET A vector.
Compartilhe este artigo