Omoruwou F, Okewale AO and Owabor CN
This present work investigated surface response modeling and optimization of corrosion inhibition of water hyacinth on mild steel surface in an acidic medium. This was achieved using the central composite design (CCD) experimental design. Response Surface Methodology was used to assess the effects of experimental process variables that influenced rate of corrosion, and for searching of optimum combinations of factors. The rate of corrosion on mild steel surface was study using weight loss method. The optimum process variables obtained from the quadratic model developed were 1.50 g/l inhibitor’s concentration, 8 hours exposure time, and temperature of 60°C with a predicted inhibitor’s efficiency value of 82.89%. The experimental result obtained from optimum value validation was 81.5% and the predicted optimum value was adequately represented. The mild steel corrosion inhibition was achieved through the double bond adsorption of carbonyl group existing in the inhibitor phytochemical constituent.
Compartilhe este artigo