Dorsaf Bengaied*,Antonio Ribeiro,Mohamed Amri,Daniel Scherman,Philippe Arnaud
Doxorubicin (DOX) has been used in the treatment of variety of cancers but its administration is limited by a dosedependent toxicity. Its cytotoxic effects on malignant cells have shown an increase in the risk of cardiotoxicity, hepatoxicity, renal insufisance. Antioxydants have been explored for both their cancer preventive properties and chemodulatory of DOX toxicity. Resveratrol (RSV) is a polyphenolic constituent of several dietary mainly of grapes and wine origin recently its anticancer potential has been extensively explored, revealing its anti-proliferative effect on different cancer cell lines, both in vitro and in vivo. RSV is also known to have modulatory effects on cell apoptosis, migration and growth via various signaling pathways. Though, RSV possesses great medicinal value, its applications as a therapeutic drug is limited. Problems like low oral bioavailability and poor aqueous solubility make RSV an unreliable candidate for therapeutic purposes. Additionally, the rapid gastrointestinal digestion of RSV is also a major barrier for its clinical translation. Hence, to overcome these disadvantages RSV-based nanodelivery systems have been considered in recent times. Nanodelivery systems of RSV have shown promising results in its uptake by the epithelial system as well as enhanced delivery to the target site. Herein we have tried to bring new new insights into the molecular mechanisms of DOX toxicity with respect to DNA damage, free radicals and whether RSV can be a playmaker as chemodulatory of DOx.
Compartilhe este artigo