Talwar DN and Becla P
The results of a comprehensive experimental and theoretical study is reported to empathize the optical properties of binary GaAs, ZnTe, CdTe and ternary Cd1-xZnxTe (CZT) alloys in the two energy regions: (i) far-infrared (FIR), and (ii) near-infrared (NIR) to ultraviolet (UV). A high resolution Fourier transform infrared spectrometer is used to assess the FIR response of GaAs, ZnTe, CdTe and CZT alloys in the entire composition 1.0 ≥ x ≥ 0 range. Accurate model dielectric functions are established appositely to extort the optical constants of the binary materials. The simulated dielectric functions ε?¯???¥(ω) and refractive indices n~(ω) are meticulously appraised in the FIR → NIR → UV energy range by comparing them against the existing spectroscopic FTIR and ellipsometry data. These outcomes are expended eloquently for evaluating the polarization dependent reflectivity R(λ) and transmission T(λ) spectra of ultrathin CZT/GaAs (001) epifilms. A reasonably accurate assessment of the CZT film thickness by reflectivity study has offered a credible testimony for characterizing any semiconducting epitaxially grown nanostructured materials of technological importance.
Compartilhe este artigo