..

Mixtures of Self-Modelling Regressions

Abstract

Rhonda D Szczesniak, Kert Viele and Robin L Cooper

A shape invariant model for functions f1,…,fn specifies that each individual function fi can be related to a common shape function g through the relation fi(x)=aig(cix + di) + bi. We consider a flexible mixture model that allows multiple shape functions g1,…,gK, where each fi is a shape invariant transformation of one of those gk. We derive an MCMC algorithm for fitting the model using Bayesian Adaptive Regression Splines (BARS), propose a strategy to improve its mixing properties and utilize existing model selection criteria in semiparametric mixtures to select the number of distinct shape functions. We discuss some of the computational difficulties that arise. The method is illustrated using synaptic transmission data, where the groups of functions may indicate different active zones in a synapse.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado

Compartilhe este artigo

Indexado em

Links Relacionados

arrow_upward arrow_upward