Kannan RS, Kavitha K, Muthukrishnan P, Krishnan NP and Ilayaraja M
The phenol-formaldehyde/silicon dioxide resin (PFSR) adsorbent showed superior adsorption properties for Pb (II) ion. The aimed composite material was characterized by XRD, FT-IR, SEM and BET techniques. Sorption properties of the synthesized composite powder were evaluated through sorption of lead ions from their aqueous solutions. Batch sorption tests were carried out at different initial heavy metal ion concentrations revealing that the synthesized composite has great selectivity to lead ions. The experimentally obtained sorption results were analyzed using pseudofirst and second order kinetic models to stand on the possible sorption mechanisms indicating the sorption behavior of the studied ions onto PFSR composite belonged to the pseudo-second order kinetic model and the sorption process was a chemical process. Isotherm plots were constructed and analyzed using Langmuir, Freundlich, Temkin, D-R and Jovanoic isotherm models. The D-R and Temkin isotherm model provided the best fit for the Pb(II) ion, revealing the maximum adsorption capacity of 13.74 mg/g. Thermodynamic studies revealed that Pb(II) adsorption on the PFSR adsorbent is a favorable, spontaneous, and endothermic process.
Compartilhe este artigo