..

Jornal Global de Tecnologia e Otimização

Adaptive Ensemble and Hybrid Models for Classification of Bioinformatics Datasets

Abstract

Tarek Helmy, Mosleh M. Al-Harthi1, Mohamed T. Faheem

Clinical databases have accumulated large quantities of information about patients and their clinical histories. Data mining is the search for relationships and patterns within this data that could provide useful knowledge for effective decision-making. Classification analysis is one of the widely adopted data mining techniques for healthcare applications to support and improving the quality of medical diagnosis. This paper presents individual, ensembles and hybrid of computational intelligence techniques such as Support Vector Machine (SVM), Neural Networks (NN), Function Network (FN) and Fuzzy Logic (FL) to classify real bioinformatics datasets. The performance of the proposed computational techniques measured using well known bioinformatics datasets. As expected, the performance of the proposed ensembles and hybrid computational intelligence models is better compared to the monolithic models and overcome the weaknesses of existing classifiers particularly in the classification accuracy.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado

Compartilhe este artigo

arrow_upward arrow_upward